St Peter's C.E. Academy

Our Approach to Calculations

This booklet outlines a variety of written calculations used for the four number operations. These written methods are based around a sound understanding of times tables along with being able to rapidly recall associated division facts. A good understanding of number bonds to 10,20 and 100 , along with the number system and place value are also essential. Children will use equipment and pictures to support their understanding. Children will need fluent number skills to reason and problem solve.

Throughout the booklet the strategies for each operation have been organised so that children can build upon these methods. It is vitally important that the children understand their chosen method and are capable of explaining this to others. When a new strategy is introduced, previous learning will be built upon to develop progression across the four number operations.

The children are expected to choose the most efficient written method for each of the number operations that they can explain and understand securely.

ADDITION

Mental Skills. * Count on in ones and tens. * Know number bonds to 10 , 20 and 100. * Recognise the size and position of numbers. * Add multiples of 10 and 100 to any number. * Partition and recombine numbers.	add count on addition plus more sum total altogether increase
Count on using a number line or ruler.	
Part Whole model Shows the relationship between the whole number and the component parts.	
Bar model A pictorial representation of a number in the form of a bar. This can be used to problem solve with larger numbers.	13 4 9$4+9=13$
Add numbers in a different order to make the calculation easier. LOOK FOR NUMBER BONDS!	$8+7+2+5+3$ is the same as $\begin{aligned} & 8+2+7+3+5 \\ & 10+10+5=25 \end{aligned}$ $37+48+23$ is the same as $\begin{aligned} & 37+23+48 \\ = & 60+48 \\ = & 108 \end{aligned}$

Near Doubles.	$8+9=17$ is the same as 1 more than double $8(16+1=17)$ or 1 less then double $9(18-1=17)$ $37+36=73$ is the same as 1 more than double $36(72+1=73)$ or 1 less then double $37(74-1=73)$
Near Multiple of 10 and Adjust.	$34+48=82$ is the same as 34 add 50 and subtract 2 $64+71=135$ is the same as 64 plus 70 plus 1 more
Partitioning. $T U+T U$ Mental strategy with jottings.	
Expanded Column Method. Add the units first You should be able to explain clearly what you are doing with understanding of place value	$\begin{array}{r} 47 \\ +\quad 76 \\ \hline 13 \\ 110 \\ \hline 123 \\ \hline \end{array} \quad \begin{array}{r} 648 \\ \hline \begin{array}{r} 286 \\ \hline 120 \\ \hline 934 \end{array} \end{array}$
Column Method with Carrying Carry digits are recorded below the line	Extend understanding into decimals and in context of money and measures.

SUBTRACTION

Mental Skills * Recognise the size and position of numbers. * Count back in ones and tens. * Subtract multiples of 10 and 100 from any number.	takeaway subtract reduce less count back minus fewer difference between decrease exchanging
Count back using a number line or ruler.	
Part Whole model Shows the relationship between the whole number and the component parts.	
Bar model A pictorial representation of a number in the form of a bar. This can be used to problem solve with larger numbers.	13 $?$ 9$13-?=9$
Near Multiple of Ten and Adjust. This is a good mental strategy.	$105-47=58$ Same as subtract 50 and then add back 3

Mental Skills * Count on in different steps. * Double and halve numbers. * Recognise multiplication as repeated addition. * Use known facts to derive associated numbers. * Multiply by 10, 100 and 1000. * Quick recall of multiplication facts up to 12×12. * Multiplying by multiples of 10 . * Estimation.	multiplication times column product double lots of row groups of lots of multiply once twice three times multiple repeated addition array
Count on in groups and record as arrays.	2 groups of $4=8$ 4 groups of $2=8$ $2 \times 4=8$ $4 \times 2=8$ How many groups of 3 can be made from 12? How many groups of 4 can be made from 12? Apply times tables and associated facts to groupings $\begin{array}{ll} 3 \times 4=12 & 12 \div 4=3 \\ 4 \times 3=12 & 12 \div 3=4 \end{array}$
Count on in groups along a number line or ruler.	

DIVISION

Mental Skills * Count back in different steps. * Double and half numbers. * Recognise division as repeated subtraction. * Quick recall of division facts that relate to multiplication facts up to 12×12. * Use known facts to derive associated divisions. * Divide by 10, 100 and 1000. * Divide by multiples of 10 .	divide lots of half halve divisible group groups of divide by dividend quotient remainder divisor factor share halve $\frac{\text { Key Language } 18 \div 3=6}{18 \text { is the dividend, } 3 \text { is the divisor, } 6 \text { is the quotient }}$
Practical examples of sharing including remainders.	I have 7 sweets to share between 3 of us, what shall I do?
Understand grouping and be able to explain arrays. (grouping)	
Use a number line to count on in groups.	

Short Division.	$\begin{array}{ll}16 & 1\end{array}$
Dividing by a single digit with carrying.	$6 4 \div 4 = 1 6 4 \longdiv { 6 2 4 } 7 \longdiv { 9 2 1 }$
	$\begin{array}{lr} 91 \div 7=13 & 3 \lcm{011012} \\ 102 \div 3=34 & \end{array}$
	What to do with remainders - decimals or fraction? $196 \div 6=32 \mathrm{rem} 4$ $\begin{array}{r}043 \cdot 75 \\ 8) 3^{3} 3^{3} 0.6040\end{array}=43^{\frac{6}{8}}=43^{\frac{3}{4}}$
Chunking Down. The key to efficiency with this strategy lies in the estimate that is made before the chunking starts.	$102 \div 3=34$
e.g. for $196 \div 6$ $\left\lvert\, \begin{array}{ll} 6 \times 10=60 & 6 \times 20=120 \\ 6 \times 30=180 & 6 \times 40=240 \end{array}\right.$ Therefore the answer lies between 30 and 40. This method is based on subtracting multiples of the divisor. Initially children subtract several chunks but with practice they should look for the biggest multiples of the divisor to subtract.	$\begin{array}{cc} 196 \div 6=32 \mathrm{rem} 4=32 \frac{4}{6}=32 \frac{2}{3} \\ 6 \longdiv { 3 2 r 4 } \\ \begin{array}{c} \frac{-60}{136}(\times 10) \\ \frac{-60}{76}(\times 10) \end{array} & 6 \longdiv { 1 9 6 } \\ \frac{-180}{16}(\times 30) \\ \frac{-12}{4}(\times 2) \end{array}$

Long Division. Using factors to support long division.	$1062 \div 18$ 9 and 2 are factors of 18. First complete $1062 \div 2=531$ Next complete $531 \div 9=59$ Therefore $1062 \div 18=59$ Use factors to be more efficient. This method will only work if there are no remainders.
Long Division. HTU $\div T U$ and $T h H T U \div T U$ List the times tables you're working with to help you get started.	$\left.560 \div 24=23 \text { rem } 8=23^{\frac{8}{24}}=23^{\frac{1}{3}} \underset{\text { simplified }}{ }\right\rangle$ How many lots of 24 can we make from 560? Estimate first. $24 \times 10=240 \quad 24 \times 20=480 \quad 24 \times 30=720$ So the answer will be between 20 and 30 .

It is common, when approaching a calculation in mathematics to ask yourself 'where do I start?' or 'what do I do first?'. There is a set order in which you should undertake the basic operations of arithmetic (adding, subtracting, multiplying and dividing). The acronym BODMAS helps you remember this order

What is BODMAS?

BODMAS stands for Brackets, Order, Divide, Multiply, Add, Subtract and reminds you in what sequence to carry out the operations for arithmetic.
(B)rackets ()
(O)rder ${ }^{2} /$
(D)ivision \div
(M)ultiplication X

\author{
\} LEFT TO RIGHT

}

LEFT TO RIGHT
(A)ddition +

\} LEFT TO RIGHT

(S)ubtraction -

When you see something like...

$$
7+\left(6 \times 5^{2}+3\right)
$$

... what part should you calculate first?
Start at the left and go to the right?
Or go from right to left?
Calculate them in the wrong order, and you will get a wrong answer!

Do things in Brackets First. Example

$$
\begin{aligned}
& 6 \times(5+3)=6 \times \underline{8}=48 \\
& 6 \times(5+3)=30+3=33 \text { (wrong) }
\end{aligned}
$$

Then "Orders" (Powers, Roots) before Multiply, Divide, Add or Subtract. Example:

$$
\begin{aligned}
& \sqrt{5 \times \frac{2^{2}}{2}=5 \times 4=20} \\
& x \quad 5 \times 2^{2}=10^{2}=100 \text { (wrong) }
\end{aligned}
$$

Then Multiply or Divide before you Add or Subtract. Example:

$$
\begin{aligned}
& 2+\underline{5 \times 3}=2+\underline{15}=17 \\
& 2+5 \times 3=7 \times 3=21 \text { (wrong) }
\end{aligned}
$$

Otherwise just go left to right. Example:

$$
\begin{aligned}
& 30 \div 5 \times 3=6 \times 3=18 \\
& 30 \div 5 \times 3=30 \div 15=2 \text { (wrong) }
\end{aligned}
$$

So How Do I Remember It All Again... ? BODMAS!
B Brackets first
O Orders (ie Powers and Square Roots, etc.)
DM Division and Multiplication (left-to-right)
AS Addition and Subtraction (left-to-right)
Divide and Multiply rank equally (and go left to right).
Add and Subtract rank equally (and go left to right)

After you have done "B" and "O", just go from left to right doing any "D" or "M" as you find them.
Then go from left to right doing any "A" or "S" as you find them.

